
Chapter 1
Evolving Many-Model Agents with Vector and
Matrix Operations in Tangled Program Graphs

Tanya Djavaherpour, Ali Naqvi, Eddie Zhuang, Stephen Kelly

Abstract Tangled Program Graphs (TPGs) are highly modular, hierarchical rep-
resentations for genetic programming that are well-suited to multitask learning in
temporal sequence prediction tasks such as control and time series forecasting. In
this work, we expand the simple scalar register machines traditionally used in TPGs
to include vector and matrix memory and operations. This helps TPGs evolve ver-
satile agents that are capable of solving partially-observable control and forecasting
problems simultaneously. A single agent can predict actions in discrete and contin-
uous control tasks, as well as perform generative time-series prediction.

1.1 Introduction

Life presents an endless stream of unique problems that require multi-faceted so-
lutions. We find several examples of emergent systems that generate multi-faceted
problem solvers in nature and nature-inspired computation. A common theme in
these biological and artificial life systems is the emergence of many-model solvers,
in which general-purpose structural components are repeated and repurposed many
times in unique, specialized contexts. We see this, for example, in the many-model
structure of the neocortex (in reality and simulation), where tens of thousands of
models interact and compete to organize perception, thought, and action [1,6,10,22].
Evolution and plasticity of mental models are fundamental to the emergence of the
many-model brains in nature. It stands to reason that artificial life systems incorpo-
rating these processes (e.g. [23], [21]) show the greatest potential to reproduce the
brain’s efficiency, speed of learning new tasks, and general problem solving power.

TPGs were initially designed to solve visual reinforcement learning problems
[13] and have since been extended for supervised image classification [26], time
series prediction [17], radio fingerprint identification [5], large-scale parallelisa-
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tion [8], and ultra-fast inference on embedded hardware through the generation
of optimised standalone C code [7]. Automatic problem decomposition has been
a theme in all these works, with the modular structure of TPGs lending themselves
well to multitask learning problems which can benefit from the ability to discover
multiple predictive models that are specialized for particular tasks, and automati-
cally organize them into a single agent. Switching multiple models in and out of the
decision control flow and runtime leads to efficient inference and helps avoid com-
mon problems associated with continual and multitask learning such as catastrophic
forgetting [19] and the distraction dilemma [34].

Many recent works also explore TPGs with a focus on utilizing temporal mem-
ory [17, 18, 27, 28]. This is a natural application, since the fundamental building
blocks in TPGs are Linear Genetic Programs (LGPs) [2], in which a sequence of in-
structions operate on input data and store intermediate values in memory registers.
When registers are configured to maintain state in temporal sequence tasks, they act
as a built-in temporal memory mechanism which allows agents to build and main-
tain a mental model of the environment on-the-fly. This a requirement for operation
in environments that are only partially observable [3, 31].

Traditionally, register machines in TPGs have been limited to scalar memory
and a minimal set of operations, e.g. {+,−,×,÷,log,exp,cos}. These constraints
have led to efficient, compact, and interpretable solutions [13,28]. However, we are
increasingly interested in evolving brain-inspired computational models. To do so,
we study the types of memory and operations used in computational neuroscience
(e.g. [6], [32]) and evaluate how TPGs might be extended to support these data
structures and operations. Indeed, systems based on Linear Genetic Programming
lend themselves well to neurocomputing models because there are no constraints on
the types of memory structures or operations used. Multiple systems have emerged
in recent years that evolve programs using the types of scalar, vector, and matrix
manipulations common in modern artificial neural networks [9,24,25]. In this initial
expansion of TPGs, we test the utility of vector and matrix memory and operations,
and show how they improve the search for many-model problem solvers.

1.2 Multitask Learning

The objective in this work is to discover programs that can operate two partially-
observable classic control systems (Acrobot and Pendulum) [4], and also perform
recursive time series forecasting on two unrelated time series; Laser [11] (a real-
world recording) and Mackey-Glass [20] (a chaotic series generated from a parame-
terized function), Figure 1.1. All 4 tasks can be characterized as temporal sequence
learning problems. However, each task has unique dynamics and objectives, making
it exceedingly difficult to build a single agent capable of solving them all. Address-
ing these unique challenges simultaneously highlights the power of many-models
systems.
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1.2.1 Reinforcement Learning Problems

Reinforcement Learning (RL) is a type of machine learning problem in which com-
putational agents learn through trial-and-error interaction with the problem environ-
ment over time [30]. At each timestep, the agent observes its environment through
sensor inputs obs(t), takes an action that changes the system state, and receives
a reward signal that describes the desirability of its current situation. The goal is
to develop behaviours that map observations to actions such that the summed re-
ward over all timesteps is maximized. RL is characterized by a myriad of learning
challenges including partial observability of state, delayed rewards, dynamic and
multitask environments, and mixed discrete and continuous action spaces [16].

The unique challenge in this work requires an agent to operate in partially-
observable versions of two RL benchmarks from the classic control literature: the
discrete-action Acrobot and continuous-action Pendulum, Figure 1.1. In the Ac-
robot task, two links form a double pendulum with one end fixed and the other end
free, both connected by an actuated joint. The state of the system at each timestep,
obs(t), is described by 2 state variables including angles of the first and second joint,
θ1 and θ2. Angular velocities, θ̇1 and θ̇2, are not observable to the agent. The sys-
tem is controlled by applying a torque of +1, -1, or 0 to the joint between the links.
The objective is to swing the free end of the lower link to reach a predetermined
height in the fewest possible steps. Each timestep that fails to meet this target incurs
a penalty of -1, while successfully reaching the height concludes the task and grants
a final reward of 0. The episode ends after 200 timesteps. In the Pendulum task, a
pole is attached at one end to a fixed point and the other end is free. The pendulum
starts in a random position and the goal is to apply torque on the free end to swing
it into an upright position and balance it with its center of gravity directly above the
fixed point. The task ends after 300 timesteps. Both control tasks are episodic, with
the agent’s fitness equal to its average reward over 20 episodes with unique initial
conditions. A post-training test procedure measures the agent’s average reward over
100 episodes with start conditions not seen during training. Reward functions are
shown in Table 1.1.

Table 1.1 Definition of rewards for control tasks, provided to the agent when an episode ends due
to success, failure, or a time constraint. tmax is the max timesteps per episode. In the Pendulum task,
θ̇ is the angular velocity, Torque ∈ (−1,1) is the torque applied to the joint, and φ is a function to
normalize the pole angle: φ(θ) = ((θ +π) mod (2×π))−π .

Task Episode Reward tmax

Acrobot ∑
tend
t=1−1.0 200

Pendulum ∑
tmax
t=1 −(φ(θ)2 +0.1× θ̇ 2 +0.001×Torque2 300
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Fig. 1.1 Problems environments used in this work. For complete details on control tasks see [4]
and for time series tasks see [11, 20].

1.2.2 Recursive Time Series Forecasting Problems

The goal of time series forecasting is to predict (unseen) future values based on pre-
viously observed values. To do so, the agent is fed individual samples in order from
series x() and, given sample x(t), must predict the value of x(t + 1). Our choice of
datasets and methodology was inspired by [33] and this study follows prior evalu-
ations of TPGs in forecasting tasks [17]. The Laser and Mackey-glass datasets are
univariate and contain 1100 samples normalized to the interval [0,1].

Before predictions begin at x(t), the agent is executed for each input sample in
series x(t − 50), x(t − 49), ..., x(t − 1) and the agent’s output values are ignored.
When this priming phase is complete, recursive forecasting is used to predict future
values. That is, after x(t − 1), true samples from x() are no longer used as input.
Instead, the agent’s predictions are fed back as input to predict future values. For
example, the model’s output for x(t) becomes its input observation at t +1, and so
on. Recursive forecasting allows predictions to any horizon.

Our configuration for training evaluation uses slices of the dataset as training
episodes. Beginning at t0, agents are primed with 50 samples, and the fitness func-
tion measures how well they recursively predict the next fifty samples, repeating
with start points from t50, t100, ..., t950. Thus, solution fitness is the MSE over 950
predictions in total. In our setup, obs(t) stores the 32 most recent input values in a
first-in-first-out buffer initialized with zeroes.

A validation procedure measures how well each agent recursively forecasts be-
yond the horizon used during training. Specifically, agents are used to predict the
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next 100 samples starting from t100, t200, ...t900. MSE over the last 50 predictions
from each validation set (a total of 450 predictions) is used as the validation score.
To obtain a final test score, the single program graph with the best validation score
is used to predict the next 100 samples from t1000 (i.e, the model is primed with
samples s(t950...t999).

Note that obs(t) never contains a task-label input to identify which task is cur-
rently being experienced by the agent. As such, successful multitask agents must
1) identify the task by tracking how observation variables change over time, and 2)
predict the best task-specific action/output at each timestep.

1.2.3 Multitask Fitness

During evolution, each agent in the population is evaluated on each task indepen-
dently, resulting in 4 task-specific raw fitness scores. Agents are then assigned a
multitask fitness for each set s ∈ P (the power set of 4 task combinations). For sin-
gle task sets, multitask fitness is simply the the training fitness in that task. For
multitask sets, fitness captures how well an agent performs on multiple problems
by ranking each agent by their weakest performance in the problem set. To achieve
this, every agent’s mean reward on each task is normalized relative to the rest of the
current population. Normalized score for agent ai on task t j is calculated as:

scnrm(ai, t j) = (sc(ai, t j)− scmin(t j))/(scmax(t j)− scmin(t j)) (1.1)

where sc(ai, t j) is the mean score for agent ai on task t j and scmin,max(t j) are the
population-wide min and max mean scores for task t j. Fitness for agent ai is then
min(scnrm(ai, t{1..n}), or the minimum normalized score for agent ai over all prob-
lems. n denotes the number of problems. Thus, champions are the agents with the
highest minimum normalized fitness over all problems in each set. Normalizing re-
wards is a critical part of quantifying multitask fitness and mitigates the distraction
dilemma [34], a common issue in multitask learning in which the differing magni-
tude of reward signals may make certain tasks appear more salient.

1.3 Tangled Program Graphs

Tangled Program Graphs (TPGs) are modular, hierarchical representations for Ge-
netic Programming that are particularly well-suited to multitask learning in partially-
observable visual reinforcement learning and time series prediction tasks [17]. In
short, TPGs excel at tasks which require automatic problem decomposition and tem-
poral memory. The big idea is to construct many-model prediction machines from
the bottom up, adaptively building programs, teams of programs, and graphs of
teams of programs through an emergent and open-ended evolutionary search, Fig-
ure 1.2. The following subsections describe each component in detail and outline
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the fundamental rules that govern their interaction with each other and the external
environment.

Time (generations)
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Fig. 1.2 Illustration of the relationship between teams and programs in TPG. Initially, all programs
are leaf nodes. Over time, program action pointers may be modified to refer to other teams and
program graphs emerge. When a team is subsumed into a program graph, it is cloned and the
clone (t2c) becomes an internal node. See Section 1.3.3 for details.

1.3.1 Programs

The foundational representation in TPGs are linear genetic programs, or register
machines [2]. Register machines execute a sequence of operations which transform
data stored in memory, Algorithm 1. Register memory may be organized in virtually
any data structure, where the types of data structures used will define the set of
operations a program may use to manipulate that data. Inspired by AutoML-Zero
[25], this work supports scalar, vector, and matrix memory structures, and a wide
array of potential operations, Table 1.3. Three properties of the register machine
representation are particularly important for TPGs:

1. Since programs operate on memory structures, all intermediate values are stored
in memory, and are therefore accessible to any other instruction in the program.
In temporal sequence tasks, memory structures can maintain state between each
step in the sequence. This stateful property allows the agent to store and integrate
data over time, forming the basis of a dynamic mental model.

2. Any individual memory structure, or set of structures, may be interpreted as the
program’s output post-execution. As such, single or multiple outputs may be
defined, and outputs may take the form of any data structures supported by the
machine.

3. Instructions that have no effect on the value of output registers can be identi-
fied prior to execution and skipped during evaluation of the agent. A significant
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proportion of instructions may be ineffective in this respect. Given that each eval-
uation in temporal sequence tasks may require hundreds of program executions,
skipping these intron instructions can have a large impact on the speed and effi-
ciency of agents.

Algorithm 1 Example program (register machine). Each program contains 8 in-
stances of each memory type, scalar s, vector v, and matrix m. All integers in the
program (e.g. numbers following s,v,m) are evolved constants used for memory
indexing. mw is an evolved integer constant, unique to each program, which spec-
ifies the dimensionality of vector and matrix memory, sized (mw,1) and (mw,mw)
respectively. oi is an evolved integer constant specifying this program’s observation
offset index. obs(t) represents the observable state at time t. Python code in lines
1-3 copy obs(t) to v0 and m0, making it accessible to vector and matrix operations
later in the program (See Figure 1.3 for an example). Scalar operations can access
obs(t) directly (e.g. line 7). All memories are stateful, meaning their contents are
reset to zero at the beginning of each agent evaluation in a given task, and thereafter
left to accumulate intermediate values over time. Programs have two return values
(line 11) which are interpreted as the weight (confidence) value and action output.
In this example line 8 does not affect the final value of s0 or s1. Ineffective instruc-
tions are useful for the evolutionary search [35], but for efficiency they can easily be
identified and skipped during program execution [2]. A complete list of operations
and instruction formats appears in Table 1.3.
1: v0 = numpy.roll(obs(t), -oi)[:mw] ▷ Copy observation to vector memory
2: vi = numpy.roll(obs(t), -oi)[:mw*mw] ▷ Copy observation to temporary vector vi
3: m0 = vi.reshape(mw,mw) ▷ Copy observation to matrix memory
4: v3 = s0*vi ▷ Program execution begins
5: v3 = s0*vi
6: s0 = mean(v3)
7: s0 = s0/vi[3]
8: s3 = norm(mi) ▷ Intron
9: s1 = cos(s0)

10: if (s0 < vi[2]): s0 = -s0
11: return s0,s1 ▷ weight, continuous action

Programs represent the smallest distinct instance of a predictive model, Algo-
rithm 1. In this work, they have two return values which are interpreted in unique
ways. Scalar s0 can be characterized as a confidence value which predicts the suit-
ability of this program’s other return values relative to the current state of the system.
Programs also return scalar s1, which can be used as a continuous-valued action in
control tasks, or a prediction variable in time series forecasting. Finally, to support
discrete control tasks, programs are also associated with one task-specific discrete
action pointer, See Figure 1.2. In short, the role of programs is to learn the appro-
priate contexts in which their continuous output register (s1) and/or discrete action
should be deployed to the environment.
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Fig. 1.3 Illustration of how vector observation data obs(t) is copied to vector and matrix program
memory, lines 1-3 in Algorithm 1. In this example, obs(t) is size 8, the program’s evolved memory
dimensionality mw is 3, and its evolved observation offset index oi is 6. This methodology allows
for observation data to be represented as any size vector or matrix. Since programs have their own
mutable memory dimensionality and offset, they are free to access any part of the observation
through a window of this size.

1.3.2 Teams of Programs

In order to explicitly encourage problem decomposition, individual programs do not
work alone. Instead, a team of programs is the basic representation for a stand-alone
agent in TPGs. Each team is represented as a list of programs that collectively map
input observations obs(t) to a pair of discrete and continuous actions. Teams can
be thought of as vertices in a computational graph where the programs represent
directed, dynamically-weighted edges. For example (See Figure 1.2), given obser-
vation obs(t), all programs in team t1 will be executed in order. The contents of each
program’s s0 is interpreted as its weight. The edge with the largest weight defines
the agent’s output at time t. In this work, we require a discrete action (for discrete
control tasks such as Acrobot) and a single continuous value (for continuous control
tasks such as Pendulum and time series prediction). As such the atomic (i.e. termi-
nal) program returns its discrete action pointer and the value stored in s1. Note that
any type of memory may be used for output, implying this framework is extensible
to various task types (e.g. returning a vector memory instead of a scalar would allow
this representation to be used in multivariate time series prediction or robot control
requiring multiple continuous control variables [15].

1.3.3 Graphs of Teams of Programs

Programs and Teams are stored in separate populations and coevolved, Figure 1.2.
Initially, each team is composed of 3 unique programs and all programs are leaf
nodes, as in the left-hand side of Figure 1.2. Evolution is driven by a generational
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Genetic Algorithm (GA) in which parent selection identifies the most promising
root teams 1, which are then modified by crossover and mutation operators.

Team variation operators may change the program order or add, remove, and mu-
tate programs in the team. Team complement as well as program length and content
are all adapted properties. When a program is modified by variation operators, it
will remain a leaf with probability patomic, and will otherwise connect to one team
from the set of teams present from any previous generation. These connection mu-
tations are the mechanism by which TPGs support compositional evolution, adap-
tively recombining multiple (previously independent) teams into graph structures,
or program graphs, Right-hand side of Figure 1.2.2

Execution of a program graph begins at the root team (t3 in Figure 1.2), where all
programs in the team will execute in order. Graph traversal then follows the program
with the largest weight, repeating the execution process at every team along the path
until a leaf node is reached. Thus, the graph computes one path from root to leaf at
each timestep, where only a subset of programs in the graph (those in teams along
the path) require execution. This process is illustrated in Algorithm 2.

Algorithm 2 Selecting an action through traversal of a program graph. P is the
current program population. tmi is the current team (initially a root node). obs(t) is
the state observation. V is the set of teams visited throughout this traversal (initially
empty). First, all programs in tmi are executed relative to the current state obs(t)
(Lines 4,5). The algorithm then considers each program in order of bid (highest to
lowest, Line 7). If the program is a terminal node, its discrete and continuous action
pair is returned (Line 8). Otherwise, if the program’s action points to a team that has
not yet been visited, the procedure is called recursively on that team. Thus, while a
program graph may contain cycles, they are not followed during traversal. To ensure
an atomic is always found, team variation operators are constrained such that each
team maintains at least one program that has an atomic action.
1: procedure SelectAction(tmi, obs(t), V )
2: A = {x ∈ P : x has atomic action}
3: V =V ∪ tmi ▷ add tmi to visited teams
4: for all pi ∈ tmi do
5: bid(pi) = exec(pi,obs(t)) ▷ run prog. on obs(t) and save result
6: tm′

i = sort(tmi) ▷ sort progs by bid, highest to lowest
7: for all pi ∈ tm′

i do
8: if pi ∈ A then return action(pi) ▷ atomic reached
9: else if action(pi) /∈V then

10: return SelectAction(action(pi),obs(t),V ) ▷ delegate action (graph edge)

1 During selection, fitness ties are broken by comparing the inference complexity of agents, with
lower complexity preferred. This helps control bloat by reducing the likelihood of agents complex-
ifying without any associated fitness gain (See Section 1.4.2).
2 Complete details are available in [12, 13, 18].
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The hierarchical inter-dependency between teams emerges entirely through inter-
action with the task environment. The subset of teams/programs that require execu-
tion is dynamically selected at run-time as a function of the agent’s input observation
and the state of its mental model (i.e. memory). This many-model representation al-
lows evolution to build agents for multiple problems simultaneously [18].

1.4 Experimental Results

Experiments in this work are primarily designed to benchmark the utility of vec-
tor and matrix operations in TPGs. Results suggest that these extensions can sig-
nificantly improve multitask sequence learning in the challenging 4-task scenario
described in Section 1.2. This section discusses these findings in terms of problem
solving ability and inference complexity of the resulting multitask agents.

1.4.1 Problem Solving Ability

Figure 1.4 reports test fitness at each generation for multitask champions interact-
ing with each problem. Two independent experimental cases are shown, scalar-only
TPGs and TPGs extended with vector and matrix operations. We run 50 repeats of
each experiment, with hyperparameters listed in Table 1.2. In the Mackey-Glass and
Laser tasks, TPGs with vector and matrix operations are consistently outperform-
ing those without. Figure 1.4 shows the median fitness (solid line) and min/max
fitness (shaded area) for the single best multitask agent in each repeat. The Mann-
Whitney U test is applied to compare the final test fitness for the pair of experiments
in each plot. The scalar, vector, matrix case is significantly better in Mackey-Glass
and Laser (p < 0.05), while the scalar case is better in Pendulum (p < 0.05), and
no significant difference is found in Acrobot. Overall, only the scalar, vector, ma-
trix case is able to discover a single multitask agent capable of solving all 4 tasks.
That is, the agent can swing up the Acrobot, swing-up and balance the Pendulum,
and achieves test MSE in the recursive forecasting tasks which matches the best re-
sults achieved by single-task agents in previous work 3 [14]. This agent’s prediction
accuracy in recursive forecasting is shown in Figure 1.5.

1.4.2 Inference Complexity

Figure 1.6 provides the average number of program instructions executed per predic-
tion by the best agent as it interacts with each task. complexification [29] is clearly

3 The best scalar,vector,matrix agent in Figure 1.4 achieves a test score of 0.0144 and 0.0127 for
Mackey-Glass and Laser, respectively
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Fig. 1.4 Evolutionary progress in the multitask learning challenge. Plot shows the median test
fitness (solid line) and min/max fitness (shaded area) for the single best multitask agent over 50
repeats. The fitness score at each generation is produced by the same multitask agent which solves
all 4 problems relatively well. This agent is selected from the population using the multitask rank-
ing metric described in Section 1.2.3.

visible in most cases. The agents start simple and gradually complexify through
interaction with the problems. The only significant difference found between exper-
imental cases is in the recursive forecasting tasks. In the scalar-only experiments,
fitness tends to stagnate at generation ≈ 250. It seems that evolution does not dis-
cover ways to improve simple agents, and incremental code growth does not result
in consistent fitness improvements. The population tends not to complexify as a re-
sult. On the other hand, the scalar, vector, matrix cases exhibit incremental growth
and steady fitness improvements beyond generation 1000 in all tasks except Pendu-
lum. It appears that the extended memory and operation set enhances the expressive
power of TPGs in the recursive forecasting tasks. We leave it to future work to an-
alyze which specific operations are important, and to interpret how they are used
within linear genetic programs.
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Fig. 1.5 Example recursive forecasts produced by the best multitask agent with the full set of
operations (See scalar,vector,matrix in Figure 1.4).

1.4.3 Evolved Many-Model Hierarchies

Figure 1.7 depicts an example program graph in which each node represents one
team of programs. Node charts illustrate the proportion of timesteps in which each
team was visited during test episodes in each task. For example, the root node is
visited in every timestep, thus proportions are equal for Acrobot , Pendulum ,
Mackey-Glass , and Laser . It is currently unclear why long vertical paths appear

traversing several teams with equivalent task distributions. This structure implies
that all teams in such paths are visited together, and internal nodes are potentially
redundant. In the current version of TPGs, variation only operates on root nodes,
thus program graphs can only be constructed from the bottom up, and internal nodes
are essentially frozen, protected from variation. This property is helpful in avoiding
catastrophic forgetting in dynamic and multitask environments that require contin-
ual learning, but it comes with reduced ability for the search to fine tune behaviours
by adjusting internal components of the agent’s structure. Given that the example
team in Figure 1.7 is competent in all tasks, we wonder if support for internal node
deletion and/or variation could reduce the structural complexity of graphs without
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Fig. 1.6 Development of agent complexity. Plot shows the average number of program instructions
executed per prediction by the best multitask agent as it interacts with each task. Median (solid line)
and min/max (shaded area) over 50 independent repeats are shown. The Mann-Whitney U test is
applied to compare final instruction counts for the pair of experiments in each plot. Significant
difference in found in Mackey-Glass and Laser (p < 0.05). See Figure 1 for an illustrative example
program.

having to tear down the agent from the root and build it back up. Answering this
question presents an important opportunity for future work.

1.5 Discussion and Future Work

TPGs evolve many-model agents which reuse structurally-simple building blocks
in complex hierarchical systems. These agents are evolved from scratch to solve
several types of temporal sequence prediction problems simultaneously. We have
shown that TPGs can discover multi-faceted solvers for a set partially observable
problems including discrete control, continuous control, and two unrelated time se-
ries prediction tasks. For the first time, we have demonstrated the utility of vector
and matrix operations in TPGs. These extensions are most useful in the forecast-
ing tasks, which have larger observation spaces (control tasks have obs(t) of size
2, while recursive forecasting tasks have obs(t) of size 32). Furthermore, unlike the
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Fig. 1.7 Example program graph in which each node represents one team of programs. Node charts
illustrate the proportion of timesteps in which each team was visited during test episodes in each
task.

control tasks, forecasting tasks encode a time window in obs(t). These differences
are likely the main reason why vector and matrix memory, and linear algebra oper-
ations, provides an advantage over the simple scalar register machines traditionally
used in TPGs. However, this study is just the beginning. Future work will analyze
which specific memories and operations are important, and interpret how they are
used within TPGs. We are also interested modifying TPGs’ graph-building opera-
tions in order to optimize many-model agents for efficiency. Broadly speaking, the
long-term goal is to design a search space which includes the operations needed
to discover new algorithms inspired by advanced neurocomputing models such as
Hierarchical Temporal Memory (HTM) [6], and to define new operators which can
efficiently guide evolution in this direction.

Acknowledgements This research was enabled in part by support provided by the Digital Re-
search Alliance of Canada (alliancecan.ca) and the NSERC Discovery Grants program.
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Table 1.2 Parameterization of team and program populations. nelite is the number of agents to save
in each generation. For the team population, px is the probability of crossover and pmx denotes a
mutation operator in which: x ∈ {d,a} are the probability of deleting or adding a program re-
spectively; x ∈ {m,n,s} are the probability of creating a new program, changing a path-program’s
action pointer (leaf or team), and changing a program’s shared memory pointer respectively. For
the program population, px denotes a mutation operator in which x ∈ {delete,add,mutate,swap}
are the probability for deleting, adding, mutating, or reordering instructions within a program. mw
is the dimensionality of a program’s vector and matrix memory. pmem is the probability of changing
mw. patomic is the probability that a modified action-pointer will be atomic (terminal).

Team Population
Parameter Value Parameter Value
Agent (root team) population size 1000 pmd 0.5
nelite 500 pma 0.4
Initial team size 10 pmn, pms 0.1
Max team size ∞ pmm 0.2

px 0.5

Program Population
Parameter Value Parameter Value
Number of elements in s 8 Initial mw 2
Number of elements in m 8 Min mw 2
Number of elements in v 8 Max mw 8
Initial program size 10 Max program size ∞

pdelete 0.5 padd 0.4
pmutate 1.0 pswap 0.2
patomic 0.99 pmem 0.2
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Table 1.3 Set of operations available to programs. s, v, and M denote a scalar, vector, and matrix
respectively. Early-alphabet letters (a, b, etc) denote memory addresses. Mid-alphabet letters (e.g
i, j, etc) denote indexes. In this work, the scalar experimental case is limited to OP0 - OP12, while
all operations are available in the scalar, vector, matrix case. Operations are inspired by AutoML-
Zero [25].

Op Code Input Args Output Args Description
ID Example Addresses Address (see caption)

/ types / type

OP0 s2=s3+s0 a,b / scalars c / scalar sc = sa + sb

OP1 s4=s0-s1 a,b / scalars c / scalar sc = sa − sb

OP2 s8=s5*s5 a,b / scalars c / scalar sc = sa sb

OP3 s7=s5/s2 a,b / scalars c / scalar sc = sa/sb

OP4 s8=abs(s0) a / scalar b / scalar sb = |sa|
OP5 s4=1/s8 a / scalar b / scalar sb = 1/sa

OP6 s1=cos(s4) a / scalar b / scalar sb = cos(sa)

OP7 s1=exp(s2) a / scalar b / scalar sb = esa

OP8 s0=log(s3) a / scalar b / scalar sb = logsa

OP9 s3=heaviside(s0) a / scalar b / scalar sb = 1R+ (sa)

OP10 if(s3<s7):s2=-s2 a,b / scalar c / scalar IF(sa ¡ sb) THEN sc = -sc

OP11 s1=minimum(s2,s3) a,b / scalars c / scalar sc = min(sa,sb)

OP12 s8=maximum(s3,s0) a,b / scalars c / scalar sc = max(sa,sb)

OP13 v2=heaviside(v2) a / vector b / vector v(i)
b = 1R+ (v

(i)
a )∀i

OP14 m7=heaviside(m3) a / matrix b / matrix M(i, j)
b = 1R+ (M

(i, j)
a )∀i, j

OP15 v1=s7*v1 a,b / sc,vec c / vector vc = sa vb

OP16 v1=bcast(s3) a / scalar b / vector v(i)
b = sa ∀i

OP17 v5=1/v7 a / vector b / vector v(i)
b = 1/v(i)

a ∀i
OP18 s0=norm(v3) a / scalar b / vector sb = |va|
OP19 v3=abs(v3) a / vector b / vector v(i)

b = |v(i)
a | ∀i

OP20 v5=v0+v9 a,b / vectors c / vector vc = va +vb

OP21 v1=v0-v9 a,b / vectors c / vector vc = va −vb

OP21 v8=v1*v9 a,b / vectors c / vector v(i)
c = v(i)

a v(i)
b ∀i

OP22 v9=v8/v2 a,b / vectors c / vector v(i)
c = v(i)

a /v(i)
b ∀i

OP23 s6=dot(v1,v5) a,b / vectors c / scalar sc = vT
a vb

OP24 v4=minimum(v3,v9) a,b / vectors c / vector v(i)
c = min(v(i)

a ,v(i)
b )∀i

OP25 v7=maximum(v3,v6) a,b / vectors c / vector v(i)
c = max(v(i)

a ,v(i)
b )∀i

OP26 s2=mean(v2) a / vector b / scalar sb = mean(va)

OP27 s3=std(v3) a / vector b / scalar sb = stdev(va)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Table continues on the next page.] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Table 1.3 Ops vocabulary (continued)

Op Code Input Args Output Args Description
ID Example Addresses Address (see caption)

/ types / type

OP28 m1=outer(v6,v5) a,b / vectors c / matrix Mc = va vT
b

OP29 m1=s4*m2 a,b / sc/mat c / matrix Mc = sa Mb

OP30 m3=1/m0 a / matrix b / matrix M(i, j)
b = 1/M(i, j)

a ∀i, j
OP31 v6=dot(m1,v0) a,b / mat/vec c / vector vc = Ma vb

OP32 m2=bcast(v0,axis=0) a / vector b / matrix M(i, j)
b = v(i)

a ∀i, j

OP33 m2=bcast(v0,axis=1) a / vector b / matrix M( j,i)
b = v(i)

a ∀i, j
OP34 s2=norm(m1) a / matrix b / scalar sb = ||Ma||
OP35 v4=norm(m7,axis=0) a / matrix b / vector v(i)

b = |M(i,·)
a | ∀i

OP36 v4=norm(m7,axis=1) a / matrix b / vector v( j)
b = |M(·, j)

a | ∀ j
OP37 m9=transpose(m3) a / matrix b / matrix Mb = |MT

a |
OP38 m1=abs(m8) a / matrix - b / matrix M(i, j)

b = |M(i, j)
a | ∀i, j

OP39 m2=m2+m0 a,b / matrixes c / matrix Mc = Ma +Mb

OP40 m2=m3-m1 a,b / matrixes c / matrix Mc = Ma −Mb

OP41 m3=m2*m3 a,b / matrixes c / matrix M(i, j)
c = M(i, j)

a M(i, j)
b ∀i, j

OP42 m4=m2/m4 a,b / matrixes c / matrix M(i, j)
c = M(i, j)

a /M(i, j)
b ∀i, j

OP43 m5=matmul(m5,m7) a,b / matrixes c / matrix Mc = Ma Mb

OP44 m2=minimum(m2,m1) a,b / matrixes c / matrix M(i, j)
c = min(M(i, j)

a ,M(i, j)
b )∀i, j

OP45 m7=maximum(m1,m0) a,b / matrixes c / matrix M(i, j)
c = max(M(i, j)

a ,M(i, j)
b )∀i, j

OP46 s2=mean(m8) a / matrix b / scalar sb = mean(Ma)

OP47 v1=mean(m2,axis=0) a / matrix b / vector v(i)
b = mean(M(i,·)

a )∀i

OP48 v3=std(m2,axis=0) a / matrix b / vector v(i)
b = stdev(M(i,·)

a )∀i
OP49 s4=std(m0) a / matrix b / scalar sb = stdev(Ma)
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