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Introduction
Artificial Intelligence (AI) has achieved significant mile-
stones in fields governed by clear rules, such as theorem
proving and strategy games like chess (Agüera y Arcas,
2017). However, applying AI to music composition presents
a unique challenge due to the subjective nature of evaluating
creative work; the difficulty in designing a fitness function
capable of measuring the creativity and uniqueness of solu-
tions remains an unsolved issue (McCormack, 2005). Even
in the realm of generative machine learning, the focus has
been modelling large datasets and producing plausible recre-
ations rather than generating novel works or simulating the
creative process itself.

Music is widely regarded as a product of evolution, with
theories on the cultural evolution of music (Savage, 2019)
and ethnomusicology studies (Berger and Stone, 2019) sug-
gesting music and culture co-evolve. This insight leads to
the proposition that genetic programming could foster in-
novative compositions by modelling evolutionary processes.
Specifically, an evolutionary search for computer programs
has great potential for exploratory creativity through the
discovery of new programs, and transformational creativ-
ity by automatically encapsulating reusable code modules
(e.g. functions) and performing a meta-search at the func-
tion/module level. A bi-level search of this nature may facil-
itate insight, a fundamental aspect of creative problem solv-
ing (Colin et al., 2016).

In this context, we propose using Tangled Program
Graphs (TPG) (Kelly et al., 2021a), a highly modular ge-
netic programming framework, to evolve music-generating
agents that require a fraction of the computational and stor-
age demands typically associated with Deep Neural Net-
works. TPGs have yet to be explored for solving multivari-
ate time series forecasting problems, making this an exciting
and relatively untapped area of research.

Methodology
MIDI Music Representation
To represent the MIDI file as a multivariate time series that
can also be reversed back to MIDI, we identified the most

important features that need to be included in a time step.
Each time step consists of the offset: the time location of the
note, duration: the held length of the note, and the pitch: the
note. To make the time location of the notes stationary such
that the data can be normalized, we use the first-order dif-
ference between notes (i.e. the change in seconds between
one note and another). Expression symbols such as dynam-
ics of pitches are omitted, as our focus is on generating note
sequences rather than reproducing subtleties of a particular
performance. We hypothesize that this representation will
be suitable for multivariate time series forecasting. How-
ever, in this initial study we will focus solely on predicting
pitch sequences.

The representation of the MIDI file was validated by com-
paring two MIDI files from the MidiFind system (Xia et al.,
2014). We performed a subjective listening assessment post-
encoding and decoding of the input MIDI file and detected
no significant data loss.

Tangled Program Graphs

Tangled Program Graphs (TPGs) are a genetic programming
framework initially designed for Reinforcement Learning
(RL)(Kelly and Heywood, 2018; Kelly et al., 2021a). While
Recurrent Deep Learning Networks are prevalent for time
series forecasting, TPGs have shown comparable com-
petence at a fraction of the computational and storage
cost(Desnos et al., 2021). TPG agents are represented by
teams of programs where each program is a sequence of in-
structions that operate on sensory inputs and internal mem-
ory registers and return two values: a bid value and an action
value. The team’s prediction at each time step is the action
value of the highest bidder. Teams and programs are stored
in separate populations and co-evolved, effectively perform-
ing a bi-level search in which programs learn the context
in which their output is appropriate, and teams learn which
programs work well together collectively, (see Figure 1). Fi-
nally, each program’s action output can either be a computed
scalar prediction (s1) or a pointer to another team (i.e. an
action delegation). This property allows evolution to build
team hierarchies, or program graphs.



Figure 1: Illustration of multi-level TPG structure. Detailed
description can be found in (Kelly and Heywood, 2018).

Agents are shown a sliding window of 50 values at a time
and rely on TPG’s temporal memory mechanisms (Kelly
et al., 2021a) to learn mental models of the environment
from which to predict future values.

Recursive Forecasting We use the recursive forecasting
paradigm in which agents are primed with 50 samples and
then evaluated on how well they predict the next 50 samples
through feedback by connecting the agent’s output back to
its input (Kelly et al., 2020). This methodology supports se-
quence predictions up to any horizon, and opens the possi-
bility of creative sequence generation well beyond the hori-
zon used for training. Indeed, our test procedure measures
how well agents recursively predict 100 samples, twice the
horizon used during training (see Figure 3).

Experiments
Experimental setup We use “Ave Maria” by
Bach/Gounod as a test piece and compare the utility
of three fitness functions: Mean Squared Error (MSE)
(Botchkarev, 2019), Pearson Correlation (Haut et al., 2023),
and U of Theil (Lima et al., 2016). 20 evolutionary repeats
with unique random seeds are conducted for each fitness
function. In order to compute the fitness, we wait until the
end of each recursive forecasting episode to gather all the
predictions and compare them to their targeted values. This
is because the U of Theil and correlation require more than
the current values to be effective; U of Theil is normalized
by a random walk forecast error (Lima et al., 2016) and
correlation requires the mean of its window of inputs (Haut
et al., 2023). The parameters used for TPG generally follow
previous studies (Kelly et al., 2021b).

Results To compare the fitness functions on a common
scale, we used MSE as the standard metric. When run-
ning 20 tests per fitness function, U of Theil produced the
best-performing agent on the testing data (see Figure 2).
On average, however, U of Theil performed close to MSE.

Not surprisingly, the correlation metric resulted in the worst
MSE. However, the combination of correlation with a post-
evolution alignment step is effective in symbolic regression
tasks (Haut et al., 2023) and may also be worth investing in
time series forecasting.
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Figure 2: Test performance of single-best agents from 20
repeats with each fitness functions. Test forecasts are mea-
sured with MSE for the purpose of comparison.
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Figure 3: Comparison of recursive forecasting behaviours
discovered using three distinct fitness functions.

As can be seen in a sample of test results (see Figure 3),
agents trained with U of Theil predict changes in the pitch
sequence that occur beyond the 50-step prime input (See the
change at step 300).

Conclusion
Our results demonstrate that Tangled Program Graphs show
promise for recursive time series prediction in an unpre-
dictable task such as music, even with limited data. How-
ever, the choice of fitness function is critical. The U of Theil
performs best when the goal is to achieve the optimal value
rather than settling for a sub-optimal value. This can be par-
tially attributed to U of Theil benefiting from double the it-
erations compared to MSE. On the other hand, MSE would
be ideal if faster convergence is the goal. Future work will
consider the multivariate prediction of complete MIDI mu-
sic representations.
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